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Abstract— This paper is about an encryption based approach
to the secure implementation of feedback controllers for cyber-
physical systems. Specifically, Paillier’s homomorphic encryp-
tion is used in a custom digital implementation of a class of
linear dynamic controllers, including static gain as a special
case. The implementation is amenable to Field Programmable
Gate Array (FPGA) realization. Experimental results, including
timing analysis and resource usage characteristics for different
encryption key lengths, are presented for the realization of a
controller for an inverted pendulum; as this is an unstable
plant, the control is necessarily fast.

I. INTRODUCTION

A. Motivation

Advances in communication, control, and computer engi-
neering have enabled design and implementation of large-
scale systems, such as smart infrastructure, with remote
monitoring and control, which is often desired due to the
geographical spread of the system and requirements for
flexibility of design (to accommodate future expansions).
These positive features however come at the cost of security
threats and privacy invasions [1]–[4].

Security threats can be decomposed into multiple cate-
gories based on resources available to adversaries [5]. A
basic security attack that requires relatively few resources
is eavesdropping in which an adversary monitors commu-
nication links to extract valuable information about the
underlying system. Eavesdropping is often a starting point for
more sophisticated attacks [6]. These attacks have resulted
in the use of encryption [7], [8]. Figure 1 (a) illustrates the
schematic diagram of a typical secure cyber-physical system
with encryption. The actuator, system, and sensor (sometimes
together referred to as the plant) form the physical system
that must be remotely monitored and controlled. The physical
system can be the electricity grid, transportation network, or
a building, for example. Note that, although a single node is
used in Figure 1 (b) to denote the sensor, in general it can
comprise a collection of non-co-located sensors. That is, the
sensors can be spread geographically within the underlying
physical system to measure appropriate states in different
locations, e.g., voltages and frequencies at various locations
in an electricity. The same also goes for the actuator. For
example in an electricity grid, the underlying physical system
is the power network. The sensors (e.g., phasor measurement
units or PMUs) measure phase and voltage at generators
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and major connections. The actuators then adjust the me-
chanical power of the turbines at the generators to maintain
the frequency of the grid at 50 Hz. The addition of the
encryption and decryption units in Figure 1 (a) protects the
overall system against eavesdroppers on the communication
network; however, it does not provide any protection if the
eavesdropper infiltrates the controller or if the controller
itself is the eavesdropper (in industrial espionage). This is
because sensitive information is decrypted prior to entering
the controller and is thus readily available there. This mo-
tivates the use of a system, depicted in Figure 1 (b), with
homomorphic encryption enabling controller computations
to be performed on encrypted numbers.

In practice, the (physical) system in Figure 1 (b) is a
continuous-time dynamical system. To control the system,
the sensors sample the outputs of the system at regular
intervals and transmits these sampled measurements to the
controller through communication networks (e.g., WiFi or
Bluetooth for short ranges or the Internet for longer ranges).
The controller computes the necessary commands based on
the received measurements and forwards the commands to
the actuators for implementation. The actuators then apply
and hold the received control signal for a fixed duration. This
methodology for digital control of physical systems is often,
unsurprisingly, referred to as sample and hold [9]. Before
new samples can be processed by the controller, it must
process the previous ones, compute the control inputs, and
transmit the control inputs to the actuators. Therefore, the
sampling rate of the sensors must not be faster than the in-
verse of the worst-case delay/latency caused by the required
computations and communications. In order to guarantee
stability and performance of the overall closed-loop system,
we must ensure that the sampling occurs regularly and faster
than a certain level (related to how fast the dynamics of the
system are) [9]. In [10], an embedded processor, specifically
a Raspberry Pi, was used to control a differential-wheeled
robot in real-time using an encrypted controller. Controlling
such a robot is not a complicated task as the underlying
system is stable and, if the control signal is not updated
with regular timing, the system would not violate safety
constraints so long as it is restricted to move very slowly.
Further, slowing down the sampling rate in this robot only
degrades the performance by making it slower, not resulting
in undesirable behaviours. In safety critical applications,
however, the timing of the control loop is crucial; if we
cannot ensure that the controller is able to provide the correct
actuation signal within the sampling time of the system, then
safe operation of the system cannot be guaranteed. Having
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Fig. 1. The schematic diagram of a networked control system with (a) normal encryption and (b) semi-homomorphic encryption-decryption units.

tight control on the timing is unfortunately not entirely possi-
ble on embedded processors with operating systems because
computations and their timings are subject to the operat-
ing system scheduling. Even without an operating system,
software implementations can run in variable time due to
branching logic. This motivates the design of a custom digital
engine, amenable to realization on Field-Programmable Gate
Arrays (FPGAs), for performing the necessary computations.
This is the focus of the developments presented below.

B. Contributions

In this paper, we use homomorphic encryption, specifi-
cally the Paillier encryption [11], to implement linear time-
invariant static and dynamic control laws. This includes
many popular control laws, such as proportional-integral-
derivative (PID) control [12] and linear quadratic regulators
(LQR) [13]. Although the paper presents the digital system
implementation within in the context of Paillier encryption,
the underlying methodology is applicable to other homomor-
phic encryption methods that rely on exponentiations of large
integer numbers, such as RSA and ElGamal encryption [14],
[15], with possibly more limited functionality depending on
the homomorphic property present. After the quantization
and transformation of the controllers for implementation
on ciphertexts, modular multipliers and exponentiators are
implemented using Montgomery multiplication [16], [17].
We use these modules to design parallel circuits for en-
cryption, controller computation, and decryption. We analyze
the timing of the circuits and present experimental results
for the control of an unstable system, namely, the inverted
pendulum.

C. Related Studies

The study of homomorphic encryption, a form of encryp-
tion that enables computations on the encrypted data, dates
back to the pioneering result of [18] after observing semi-
homomorphic properties in RSA [14]. Semi-homomorphic
refers to a simpler form of homomorphic encryption that
only allows for a category of operations to be performed

on the encrypted data. For example, RSA and ElGamal
encryption [15] allows multiplication of plaintext data using
multiplication of encrypted data, and Paillier encryption [11]
allows summation of plaintext data using multiplication of
encrypted data. The Gentry’s encryption scheme [19] is the
first fully-homomorphic encryption scheme that allows both
multiplication and summation of plain data through appro-
priate arithmetic operations on encrypted data. Subsequently,
other fully homomorphic encryption methods have been
proposed, e.g., [20], [21]. The computational burden of fully-
homomorphic encryption methods is often much greater than
that of semi-homomorphic encryption methods.

Homomorphic encryption has been used previously for
third-party cloud-computing services [22]–[27]. More recent
studies [10], [28]–[31] have considered challenges associated
with the use of homomorphic encryption in closed-loop
control of physical systems, such as maintaining stability
and performance, albeit without considering timing concerns
(by not getting into the computational time of encryption,
computation, and decryption and assuming all underlying
computations are instantaneous). None of these studies con-
sider dynamic control laws; they are all restricted to static
control laws without any form of memory. This is because,
in dynamical control laws with an encrypted memory, the
number of bits required for representing the state of the
controller grows linearly with the number of iterations. This
renders the memory useless after a certain number iterations
due to an overflow or an underflow1. We borrow theoretical
results from [32]–[34] to propose an implementation of
dynamical systems over ciphertexts.

An alternative to homomorphic encryption is secure multi-
party computation based on secret sharing or other forms of
encryption (possibly non-homomorphic encryption method-
ologies). A well-known method for secure multi-party com-
putation is the Yao protocol, which was originally developed

1Underflow refers to the case where number of fractional bits required for
representing a number becomes larger than the allowed number of fractional
bits in a fixed-point number basis.



for secure two-party computations [35]. The protocol pro-
vides a method for evaluating a Boolean function without
any party being able to observe the bits that flow through
the circuit during the evaluation. This has been proved to
be secure [36] and efficiently implementable for Boolean
functions [37]. However, when dealing with more general
mappings, i.e., non-Boolean functions, the efficiency of the
protocol is limited as the problem of finding the most
efficient Boolean representation of a function, in terms of
the efficiency of implementing the Yao protocol [38], is not
trivial [39]. Another approach is to utilize secret sharing
in which a secret is divided into multiple shares and each
party receives one share, which appears random to the
receiving party. Then, appropriate computations on the secret
shares can be performed to evaluate the outcome [40], [41].
Application of secret sharing to general problems is generally
difficult and the digital design becomes problem specific.

Finally, note that the Paillier encryption scheme has been
recently implemented on FPGAs in [42]; however, that paper
considered the problem of privacy-preserving data mining,
which has different requirements in comparison to real-time
encrypted control. This differences in requirements resulted
in the adoption of different digital design architectures in
this paper. In part, the encryption is faster in this paper due
to exploiting the binomial expansion for the specific choice
of the exponential base. Further, due to the differences be-
tween the operations required for data mining and controller
computation, the developed implementations differ.

D. Paper Outline

The rest of the paper is organized as follows. In Section II,
the building blocks of the networked control systems in Fig-
ure 1 (b) are presented and we describe the implementation of
the control laws over ciphertexts. In Section III, the digital
design for FPGA realization is described. We present the
experimental results for the control of an inverted pendulum
in Section IV. Finally, we conclude the paper and present
avenues for future research in Section V.

II. SECURE CYBER-PHYSICAL SYSTEMS

In this section, we discuss the building blocks of the
networked control systems in Figure 1 (b). We start by
describing a model for the physical system.

A. Physical Systems

Many physical systems, such as autonomous vehicles,
robotic systems, smart buildings, and transport systems, can
be modelled as a continuous-time time-invariant dynamical
system:

Pc : ẋsc(t) = fc(xsc(t), uc(t)), xsc(0) = x0, (1a)
yc(t) = gc(xsc(t)), (1b)

where xsc(t) ∈ Rns is the system state vector (e.g.,
pose, position, and velocity), uc(t) ∈ Rnu is the vector
of control inputs (e.g., acceleration, force, or torque), and
yc(t) ∈ Rny is the vector of system outputs (e.g., position).
In short, (1a) describes the state evolution over time, which

depends on the previous state and the control input to the
system, and (1b) produces the observable system output,
which depends on the current system state. Using the sample
and hold methodology [9], we can extract a corresponding
system in the discrete-time domain:

P : xs[k + 1] = f(xs[k], u[k]), xs[0] = x0, (2a)
y[k] = g(xs[k]), (2b)

where, for all k ∈ N ∪ {0}, xs[k] = xsc(k∆T ), y[k] =
yc(k∆T ), uc(t) = u[k] for all k∆T ≤ t < (k + 1)∆T , and
∆T denotes the sampling time. Most often, we are interested
in designing and employing a controller that takes the system
output as an input, and produces a control input to the system
to regulate the system output around a desired setpoint.

B. Homomorphic Encryption

A public key encryption scheme can be described by the
tuple (P,C,K, E ,D), where P is the set of plaintexts, C is
the set of ciphertexts, K is the set of keys, E is the encryption
algorithm, and D is the decryption algorithm. As such
encryption schemes are asymmetric, each key κ = (κp, κs) ∈
K is composed of a public key κp (which is shared with
everyone and is used to encrypt plaintexts), and a private key
κs (which is kept secret and is used to decrypt ciphertexts).
The algorithms E and D are publicly known, and use the keys
as parameters, which are generated for each new use-case.
It is obviously required that D(E(x, κp), κp, κs) = x.

Definition 1 (Homomorphism in Cryptography): A pub-
lic key encryption scheme (P,C,K, E ,D) is homomorphic
if there exist operators ◦ and � such that (P, ◦) and (C, �)
are algebraic groups and E(x1, κp)�E(x2, κp) = E(x1 ◦x2).

Typically, the sets P and C are finite rings of integers ZnP

and ZnC
respectively. Then, the modular addition operation

(x1◦x2 = (x1+x2) modnP ) and the modular multiplication
operation (x1◦x2 = x1x2 modnP ) both form groups with P.
If there exists an operator � that satisfies the definition of a
homomorphic encryption scheme when ◦ is defined as modu-
lar addition, we call the encryption scheme additively homo-
morphic. Likewise, if there exists an operation � that satisfies
the definition of a homomorphic encryption scheme when ◦
is defined as modular multiplication, we call the encryption
scheme multiplicatively homomorphic. If both descriptions
apply, the encryption scheme is fully-homomorphic; if only
one description applies, it is semi-homomorphic. Importantly,
the properties of fully-homomorphic and semi-homomorphic
encryption schemes allow additions and multiplications of
plaintexts to be performed through the generation of a
ciphertext from other ciphertexts, without any intermediate
decryptions and encryptions.

Encryption schemes, such as the Paillier [11], RSA [14],
and ElGamal [15], are examples of semi-homomorphic en-
cryption schemes. The Paillier encryption scheme is addi-
tively homomorphic, while the RSA and ElGamal encryption
schemes are multiplicatively homomorphic. These homomor-
phic encryption schemes have been used in the literature
to ensure privacy and security when various computational



tasks, such as computing set intersections, data mining,
executing arbitrary programs, and controlling dynamical sys-
tems, are performed by untrusted parties; see, e.g., [10], [22]–
[26], [34] and references there-in for examples. The above-
mentioned homomorphic encryption schemes involve calcu-
lating modular exponentiations (i.e., ba modM for positive
integers a, b, and M ), which is a computationally expensive
operation. The time required to perform encryption, decryp-
tion, and homomorphic operations on ciphertexts, depends
largely on the speed with which modular exponentiation
can be calculated. This can potentially limit the usability
of homomorphic encryption schemes for real-time control
of physical systems.

Definition 2 (Indistinguishability under Chosen Plaintext):
Consider a scenario in which a polynomial-time-bounded
adversary provides two plaintexts. One of these plaintexts is
randomly chosen and encrypted. An encryption scheme is
said to be indistinguishable under chosen plaintext attack,
if the adversary has a negligible advantage2 over guessing
which of the two plaintexts were encrypted, using any
information apart from the private key.

Indistinguishability under chosen plaintext is a desirable
property because an adversary is unable to determine the
decryption of a ciphertext, by trialling encryption of likely
plaintexts. The RSA encryption scheme does not have this
property unless modified to OAEP-RSA [44]. The Paillier
and ElGamal encryption schemes have this property, as
they introduce a large random number during encryption,
allowing a single plaintext to encrypt non-deterministically
to many possible ciphertexts, which removes any significant
advantage in trialling encryption of likely plaintexts [11],
[15].

In what follows, we use Paillier encryption scheme as it
is additively homomorphic and satisfies indistinguishability
under chosen plaintext attack. Note that the ideas of this
paper can be readily used for other homomorphic encryption
relying on modular exponentiation and is not restricted to the
Paillier encryption. Paillier encryption scheme is as follows.
First, two large prime numbers p and q are randomly chosen
to generate keys. The public key is κp = N = pq and the
private key is κs = (λ, µ) = (lcm(p−1, q−1), λ−1 modN)
where lcm(a, b) denotes the least common multiple of inte-
gers a and b. Note that λ−1 modN is a unique integer µ
in ZN such that λµmodN = 1. In the Paillier encryption
scheme, the set of plaintexts and ciphertexts are, respectively,
P = ZN and C = ZN2 . Encrypting a plaintext t is done by
calculating E(t) = (N + 1)trN modN2, where r ∈ {x ∈
ZN | gcd(x,N) = 1} is randomly chosen. Note that, because
of using N + 1 as the exponentiation basis in the encryption
algorithm, it can be rewritten as E(t) = (Nt+1)rN modN2.
This property follows from the use of binomial expansion be-
cause (N + 1)trN modN2 = (

∑t
i=0

(
t
i

)
N i)rN modN2 =

(Nt + 1)rN modN2 + (N2
∑t
i=2

(
t
i

)
N i−2)rN modN2 =

2Negligible advantage means that the difference between the probability
of guessing the correct plaintext and the probability of guessing the wrong
plaintext goes to zero rapidly as the key length goes to infinity [43].

(Nt+ 1)rN modN2. Using this property makes our imple-
mentation of the encryption considerably faster than [42].
Decryption of a ciphertext c is done by calculating D(c) =
L(cλ modN2)µmodN , where L(u) = (u− 1)/N .

The additive homomorphic property follows from
D(E(t1, κp)E(t2, κp), κp, κs) = t1 + t2 modN . Further, we
have D(E(t1, κp)

t2 , κp, κs) = t1t2 modN . Note that this
is not a true multiplicative homomorphic property, as t2
is not encrypted; the encrypted result is formed from one
ciphertext and one plaintext, rather than two ciphertexts.
In the remainder of this paper, we use ⊕ to denote the
additive homomorphic operator on ciphertexts and ⊗ to
denote the pseudo-multiplicative homomorphic operator, i.e.,
c1 ⊕ c2 := (c1c2) modN2 and t⊗ c := ct modN2.

C. Secure Controller Implementation

Often feedback controllers take the form of static gain
from the error to then control input:

C : u[k] = D(s[k]− y[k]), (3)

where the control signal input u[k] is proportional to the error
between the system output y[k] and the setpoint s[k], with
constant gain D ∈ Rnu×ny ; methods for the design of such
control laws can be found in [45] and references therein.
Note that the computations required to implement the static
controller are additions and multiplications. We restrict the
controller input to fixed-point numbers and use the mapping
from fixed point numbers to the integers in [10]. This allows
the equivalent operations of addition and multiplication to be
effectively applied to fixed point numbers and integers over
the ciphertext. The effect of the quantization error can be
made arbitrarily small by increasing the number of bits used
to represent the underlying numbers (specifically the number
of fractional bits), at the expense of increased computational
cost [10], given bounds on the size of disturbances that can
act on the system. Quantizing also introduces saturation,
which can be quite problematic. However, the negative
effects of saturation may also be managed by increasing the
number of bits (specifically the number of integer bits) used
to represent the underlying numbers [10].

To provide more detail about the quantization process and
its effect on the control law, we introduce the set of fractional
numbers as

Q(n,m) :=

{
b ∈ Q | b = −bn2n−m−1 +

n−1∑
i=1

2i−m−1bi,

bi ∈ {0, 1},∀i ∈ {1, . . . , n}
}
.

The quantization operator Q : R→ Q is defined as Q(z) :=
arg minz′∈Q(n,m) |z − z′|. With slight abuse of notation, we
use Q(A) and Q(x) to denote the entry-wise quantization
of any A ∈ Rn×m and x ∈ Rn, respectively. The quantized
controller is then given by

C̄ : ū[k] = D̄(s̄[k]− ȳ[k]), (4)

where D̄ = Q(D), s̄[k] = Q(s[k]), and ȳ[k] = Q(y[k]). We
use the bar, e.g., x̄, to denote the quantized version of any



variable, e.g., x. The map from fixed point numbers to the
integers Z2n′ , borrowed from [10], is defined by

ŝi[k] = (2ms̄i[k]) mod 2n
′

(5a)

ŷi[k] = (2mȳi[k]) mod 2n
′

(5b)

D̂ij = (2mD̄ij) mod 2n
′

(5c)

ûi[k] = (22mūi[k]) mod 2n
′

(5d)

for all i, j, where n′ = 2n+dlog2(ny)e to prevent overflows.
Here, for simplicity, we assume that all variables use the
same n and m, but these values can differ for various parts
of the controller in general [10]. Now, we can rewrite the
control law in (4) on ciphertexts as

C̃ : ũi[k] = ⊕ny

j=1(D̂ij ⊗ (s̃j [k]− ỹj [k])), (6)

where the tilde is used to denote the encrypted integers; i.e.,

ũi[k] = E(ûi[k], κp), (7a)
s̃j [k] = E(ŝj [k], κp), (7b)
ỹj [k] = E(ŷj [k], κp). (7c)

Using (6), an encrypted control input is determined without
decrypting the quantized system output sample. Finally, the
control input is decrypted at the actuator as

ûi[k] = D(ũi[k], κp, κs) mod 2n
′
, (8a)

ūi[k] = 2−2m(ûi[k]− 2n
′
1ûj [k]≥2n′−1). (8b)

The static controller in (3) can be generalized to the
following dynamic form, which covers reset integral, lead
and lag controllers:

C : x[k + 1] ={
Ax[k] +B(s[k]− y[k]), k + 1 modT > 0,

0, k + 1 modT = 0,
(9a)

u[k] = Cx[k] +D(s[k]− y[k]), (9b)

where x[k] ∈ Rnx is the controller state and T is the
number of time steps between controller state resets. In this
paper, we consider resetting dynamic control laws because
implementing encrypted controllers over an infinite horizon
is impossible due to memory issues (through repeated mul-
tiplication of fixed point numbers, the numbers of the bits
required for representing the fractional and integer parts con-
tinuously grow). Resetting controllers have been previously
studied in [32]–[34]. Again, the computations performed by
the dynamical controller are additions and multiplications,
so if we restrict the controller inputs and state to fixed-
point numbers, then by using the ciphertext operators in a
homomorphic encryption scheme, the controller can perform
its computations on ciphertext inputs and states. To do so,

define

ŝi[k] = (2ms̄i[k]) mod 2n
′
, (10a)

ŷi[k] = (2mȳi[k]) mod 2n
′
, (10b)

Âij = (2mĀij) mod 2n
′
, (10c)

B̂ij [k] = (2(kmodT+1)mB̄ij [k]) mod 2n
′
, (10d)

Ĉij = (2mC̄ij) mod 2n
′
, (10e)

D̂ij [k] = (2(kmodT+1)mD̄ij [k]) mod 2n
′
, (10f)

x̂i[k] = (2(kmodT+1)mx̄i[k]) mod 2n
′
, (10g)

ûi[k] = (2(kmodT+2)mūi[k]) mod 2n
′
, (10h)

where n′ = (nx + 1)T + nu + n(T + 2). The controller
equations can then be rewritten to operate on ciphertexts as
in (11). Finally, the control signal at the actuator can be
extracted by

ûi[k] = D(ũi[k], κp, κs) mod 2n
′
, (12a)

ūi[k] = 2−(kmodT+2)m(ûi[k]− 2n
′
1ûi[k]≥2n′−1). (12b)

III. DIGITAL DESIGN

Timing is an important issue when implementing con-
trollers in real-time. While the maximum amount of compu-
tation to be performed by the controller is the same in every
iteration, implementations on platforms running an operating
system are subject to variable timing performance dependent
on operating system scheduling. Even without an operating
system, software implementations can run in variable time
due to branching. Such implementations are therefore not
acceptable for systems with strict deadlines. This motivates
the development of a custom digital engines for performing
the computations. Hardware implementation of homomor-
phic encryption based secure feedback control can result in
faster sampling rates than software implementations. The
speedup of a digital design in hardware over a software
design can be from many aspects. Hardware designs are able
to take advantage of full parallelism, while software designs
typically run sequentially on a few parallel threads, and are
thus limited in their parallelism. Hardware designs can also
introduce pipelining into data paths, where the computation
is divided into a pipeline of sequential stages, with stages all
running at the same time, and each stage passing its result to
the next stage. This can be used to increase achievable data
throughput compared to sequential software designs, as new
data can be passed through the first stage of the pipeline
while there is still data to be processed in the subsequent
stages.

A. Modular Multiplication and Exponentiation

In many homomorphic encryption schemes, including
Paillier encryption scheme, efficient implementation of mod-
ular exponentiation is essential for fast encryption, decryp-
tion, and homomorphic operations. Within the context of
secure feedback control implementation, the time it take to
perform encryption, decryption and homomorphic operations
on cyphertexts, is a lower bound on the control loop sample



C̃ : x̃i[k + 1] =

{[
⊕nx
j=1(Âij ⊗ x̃j [k])

]
⊕
[
⊕ny

j=1(B̂ij [k]⊗ (s̃j [k]− ỹj [k]))
]
, k + 1 modT > 0,

E(0, κp), k + 1 modT = 0,
(11a)

ũi[k] =
[
⊕nx
j=1(Ĉij ⊗ x̃j [k])

]
⊕
[
⊕ny

j=1(D̂ij [k]⊗ (s̃j [k]− ỹj [k]))
]
. (11b)

Pseudocode 1 Right-to-left method for modular exponentia-
tion using Montgomery multiplication in modulus M = N2

Parameters
N Paillier public key
R Montgomery radix

Inputs
B Integer base in Montgomery form B =

bRmodN2

E Integer exponent with l bits
Outputs

P Power in Montgomery form P = bERmodN2

function MONTEXP(B,E)
P ← RmodN2

for i = 1, ..., l do
if Emod 2 = 1 then

P ← MONTMULT[M = N2](P,B)
end if
E ← bE/2c
B ← MONTMULT[M = N2](B,B)

end for
return P

end function

period, which when reduced, typically leads to improved per-
formance for systems with fast dynamics (e.g., an unstable
inverted pendulum). Note that, in principle, it is possible to
decrease the time required for computations by decreasing
the encryption key length; however, this would reduce the
security of the system which is not desirable.

We utilize the right-to-left binary method for calculat-
ing modular exponentiation, which is summarized in Pseu-
docode 1. The algorithm is particularly useful for our appli-
cation as it allows for the parallelization of the two modular
multiplications in each iteration. This gives a speedup of
up to two times, and results in a constant latency as the
conditional modular multiplication is performed in parallel
to the modular multiplication that must be always performed
in each iteration. The right-to-left binary method for ex-
ponentiation involves calculating many sequential modular
multiplications. The algorithm best suited for this purpose
is Montgomery multiplication [16]. It removes the need to
perform a trial division by the modulus which is an expensive
operation in hardware, and instead only involves additions,
multiplications, and right shifts; e.g., see Pseudocode 2.
However, for it to be useful for implementing modular
multiplications, its operands must be converted to Mont-
gomery form, and the result must be converted back from
Montgomery form. These conversions can be done using

Pseudocode 2 [46] Modified Coarsely Integrated Operand
Scanning (CIOS) method variant of Montgomery multiplica-
tion using 16 bits per word and without the final conditional
subtraction.

Parameters
M Odd modulus
w Number of 16 bit words such that M < 216w

M ′ such that MM ′mod 216 = 216 − 1

Inputs
X Input such that X < 2M
Y Input such that Y < 2M

Outputs
T Such that T modM = XY R−1 modM,T <

2M
where R = 216(w+1) and RR−1 modM = 1

function MONTMULT(X,Y )
T = 0
for i = 1, ..., w + 1 do

Z ← X(Y mod 216)
Y ← bY/216c
m← ((T mod 216) + (Z mod 216))M ′mod 216

T ← (T + Z +mM)/216

end for
return T

end function

additional Montgomery multiplications. The Montgomery
form of an integer a when using a modulus of M is
(aR) modM , where the Montgomery radix R is typically a
power of 2, and is larger than M . When using Montgomery
multiplication in the right-to-left binary method for modular
exponentiation (subsequently, referred to as Montgomery ex-
ponentiation), the conversions to and from the Montgomery
form only occur before and after the exponentiation, as the
intermediate (theoretical) conversions between the sequential
multiplications within the exponentiation cancel out.

Many hardware designs for computing Montgomery mul-
tiplications exist. A design involving the Karatsuba mul-
tiplication algorithm can be used to evaluate very large
multiplications [47]. While this proved to be computationally
effective in [47], such a method may not be suitable for
some applications due to prohibitive hardware resource re-
quired for evaluating Montgomery multiplications even with
relatively small operands. Another method for implement-
ing Montgomery multiplication involves using the Coarsely
Integrated Operand Scanning (CIOS) variant [17] with a
word size of a single bit. Implementations of this algorithm
are described in [48], [49]. The bitwise approach greatly



Pseudocode 3 Encryption of the system outputs in the plant
interface (or of the setpoints elsewhere) using the Mont-
gomery multiplication and the Montgomery exponentiation.

Parameters
N Paillier public key
R Montgomery radix

Inputs
ŷ System outputs ŷ1, ..., ŷny

z Values z1, ..., zny
where zi = r′

N
i RmodN2

Outputs
y̌ Encrypted system outputs in Montgomery form

y̌1, ..., y̌ny

function ENCRYPT(ŷ, z)
for i = 1, ..., ny do

temp ← MONTMULT[M =
N2](NRmodN2, ŷi)

temp ← MONTMULT[M = N2](temp +
1, R2 modN2)

y̌i ← MONTMULT[M = N2](zi, temp)
end for
return y̌

end function

simplifies the architecture of the Montgomery multiplier, as
it is only required to perform additions and right shifts. How-
ever, the bitwise design does not make use of the embedded
multipliers available on most modern FPGA devices.

A blockwise implementation of the CIOS method of
Montgomery multiplication is ideal for the purposes of this
paper as it is amenable to the use of embedded multipliers
in FPGAs to perform smaller multiplications. Some im-
plementations of this algorithm are discussed in [50]–[52].
These implementations range from using a constant number
of embedded multipliers to the case where the number of
embedded multipliers scales linearly with the number of bits
in the operands to perform large parallel multiplications.
Therefore, based on the amount of the available hardware
resources, an appropriate implementation of the blockwise
CIOS-based Montgomery multiplier can be designed to en-
sure the resources are utilized effectively.

In Pseudocode 2, we present the modified CIOS method
in [46] with a word size of 16 bits. The modified CIOS
method removes the conditional final subtraction in typi-
cal Montgomery multiplication implementations to reduce
hardware resource consumption. Pseudocode 2 also differs
from the conventional Montgomery multiplication in that it
produces outputs that possibly have the modulus M added to
it, rather than an output in ZM . This is acceptable as long as
an explicit conversion from this modified Montgomery form,
through Montgomery multiplication by 1, is used to produce
the final result [46].

Across all Montgomery multipliers, we use the same
value of the Montgomery radix R = 216(w+1), where w
is the smallest integer such that N2 + 2 < 216w; note
that N2 + 2 is the largest modulus used in the system.

Pseudocode 4 Computing rN modN2 in the plant interface
using the Montgomery multiplication and the Montgomery
exponentiation.

Parameters
N Paillier public key

Inputs
r Random values r1, ..., rny

Outputs
z Values z1, ..., zny

where zi = r′
N
i RmodN2

function CALCULATERANDOM(r)
for i = 1, ..., ny do

zi ← MONTEXP(ri, N)
end for
return z

end function

Throughout the encrypted control system, there are only
three different values used as modulus, so these values can
be coded into the Montgomery multipliers required, with
an input allowing for the selection of the modulus. In the
Paillier encryption scheme, all modular exponentiations have
modulus M = N2, where N is the public key.

In what follows, using the digital designs of the Mont-
gomery multipliers and the Montgomery exponentiators as
the underlying arithmetic blocks, we design plant interface
and controller modules for an encrypted control system
secured with the Paillier encryption scheme. As shown in
Figure 1, the plant interface performs encryptions of system
outputs and decryptions of control inputs, and the controller
evaluates the control law securely over encrypted data. The
ciphertexts transmitted between the plant interface and the
controller are in the Montgomery form, possibly with the
modulus added: ǎ = (ãRmodN2) + bN2, b ∈ {0, 1}.

Parallelization of the digital design can be done both in
the designs the building blocks of the Montgomery multiplier
and the Montgomery exponentiator, and in the designs of
the plant interface and controller. Adding parallelization
increases the resource consumption of the hardware design,
which is a limiting factor. To offset this, resources are reused
whenever possible. In particular, the Montgomery multi-
pliers used to implement the Montgomery exponentiators
can also be used whenever single modular multiplications
are required, rather than instantiating separate Montgomery
multipliers.

B. Plant Interface Module Design

The plant interface’s role in the encrypted control system
is to encrypt the system outputs and decrypt the control
inputs. There is no requirement for a single plant interface
that performs both encryptions and decryptions, as these
functionalities can be trivially separated into distinct modules
if the actuators and the sensors are physically apart. How-
ever, a single plant interface module allows for the reuse
of hardware resources for both encryption and decryption,
reducing the hardware cost of the system.
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Fig. 2. Illustration of the parallel tasks performed by the plant interface and the controller within a single sampling period.

Pseudocode 5 Decryption of the control inputs in the plant
interface using the Montgomery multiplication and the Mont-
gomery exponentiation.

Parameters
N Paillier public key
R Montgomery radix
n′ Number of bits in mapping from fixed point

numbers Q(n,m) to integers Z2n′

µ Part of Paillier private key
λ Part of Paillier private key
N−1Value ∈ ZN2+2 such that NN−1 mod(N2+2) =

1
Inputs

ǔ Encrypted control inputs in Montgomery form
ǔ1, ..., ǔnu

Outputs
û Control inputs û1, ..., ûnu

function DECRYPT(ǔ)
for i = 1, ..., nu do

temp← MONTEXP(ǔi, λ)
temp← MONTMULT[M = N2](temp, 1)
temp ← MONTMULT[M = N2 + 2](temp −

1, N−1R2 mod(N2 + 2))
temp← MONTMULT[M = N2 + 2](temp, 1)
temp ← MONTMULT[M =

N ](temp, µR2 modN)
ûi ← MONTMULT[M = N ](temp, 1) mod 2n

′

end for
return û

end function

Paillier encryption algorithm involves the calculation of
values for rN modN2, which is independent of the plaintext
being encrypted. Note that it is possible to generate the
value of rN needed to encrypt the next system output
sample in parallel with the controller computations involving
the encryption of the current sample. This parallelization
between the plant interface and controller decreases the
time required for completing the necessary tasks within

a sampling period without utilizing extra resources. The
diagram in Figure 2 illustrates this with the task of “update
rNi modN2”. If separate interfaces are used for encryption
and decryption, further parallelization can be introduced by
starting decryption while values for rN modN2 are still
being computed, assuming that the encrypted control inputs
are available from the controller at that such a time.

There are various approaches for generating cryptographi-
cally secure random or pseudo-random values for r. Random
methods involve sampling a noise source, such as oscillator
jitter; examples can be found in [53]–[55]. Pseudo-random
methods are algorithms that generate numbers from an initial
seed, which should be generated from a random method;
examples can be found in [56], [57]. Depending on the
method used, the generator can be implemented on the
FPGA, or external to it. The generated random numbers
are used as the input to Pseudocode 4, which first converts
them to the Montgomery form, in order to compute rN .
Note that, for larger encryption key lengths, checking that
gcd(r,N) = 1 is not required, as the probability that
this is not the case is negligible. We also do not need
to convert random numbers to Montgomery form before
performing Montgomery exponentiation. Assume that we
are given a uniformly distributed random number r in
ZN . With r′ = (rR−1) modN2, where R is the Mont-
gomery radix, it can be seen r′modN = (rR−1) modN
is also uniformly distributed random number in ZN because
r 7→ (rR−1) modN is bijective (R and N are coprime).
Further, (r′modN)N modN2 = (r′)N modN2 because
(α + kN)N modN2 = αN modN2 for any α, k ∈ Z. That
is, the Montgomery form of r′ is in fact r. Therefore, using
the Montgomery exponentiation algorithm without first con-
verting to Montgomery form, we can compute rN modN2

which is equal to (r′modN)NRmodN2.
The tasks performed by the plant interface are described

in Pseudocodes 3, 4, and 5, expressed as a sequence of the
Montgomery exponentiations and the Montgomery multipli-
cations. The inputs to all of these Montgomery operations are
either constants (as the algorithm parameters do not change
within any given implementation), algorithm inputs, or the
result of the previous operations (possibly with 1 added to or



Pseudocode 6 Computing the control input of the static controller using the Montgomery multiplication and the Montgomery
exponentiation.

Parameters
N Paillier public key
R Montgomery radix
n′ Number of bits in mapping from fixed point numbers Q(n,m) to integers Z2n′

D̂ Controller matrix
Inputs

y̌ Encrypted system outputs in Montgomery form y̌1, ..., y̌ny

š Encrypted setpoints in Montgomery form š1, ..., šny

Outputs
ǔ Encrypted control inputs in Montgomery form ǔ1, ..., ǔnu

function GENERATECONTROL(y̌, š)
for i = 1, ..., ny do . Generate encrypted error values

temp← MONTEXP(y̌, 2n
′ − 1)

ěi ← MONTMULT[M = N2](temp, š)
end for
for i = 1, ..., nu do . Generate encrypted scalar products

for j = 1, ..., ny do
tempij ← MONTEXP(ěj , D̂ij)

end for
end for
for i = 1, ..., nu do . Homomorphically sum up encrypted scalar products

for j = 2, ..., ny + nu do
tempi1 ← MONTMULT[M = N2](tempi1, tempij)

end for
ǔi ← tempi1

end for
return ǔ

end function

subtracted from it, which can be evaluated within the clock
cycle used for routing the result to the next stage). Because
of this, the plant interface can be implemented by simply
selecting these inputs to Montgomery exponentiator modules.

Every loop in Pseudocodes 3, 4, and 5 can be parallelized,
as the iterations are independent of each other. For example,
the encryptions of plaintexts are independent of each other,
so individual encryptions can all be performed in parallel.
The same applies to the calculation of values for rN modN2,
and to decryptions of the ciphertexts. These parallelizations
allow physical systems with more inputs and outputs to be
controlled, without increasing the time required to perform
the encryptions and decryptions. However, as a trade-off
more hardware resources are required, and so in resource
limited scenarios, these computations can be performed
sequentially if a longer sampling period is acceptable. In
the case that the computations all be performed sequentially,
the plant interface would then require only one Montgomery
exponentiator module with which it performs the prescribed
Montgomery exponentiations and multiplications one by
one, using the same module. If on the other hand the
plant interface is fully parallelized, then it would require
max(ny, nu) Montgomery exponentiators, as the maximum
number of encryptions or decryptions to be performed in

parallel depends on whether there are more system outputs
to encrypt or more control inputs to decrypt.

C. Controller Module Design

First, we consider static controllers in (6). The controller
uses the encrypted system output to generate encrypted con-
trol inputs that stabilize the system output about a setpoint.
Pseudocode 6 implements the operations on ciphertexts in
(6). Each product, in the plaintext, is replaced with a mod-
ular exponentiation with the ciphertext as the base and the
plaintext as the exponent. These exponentiations can all be
performed in parallel. Afterwards, the results in each row can
be combined in a binary tree structure using modular mul-
tiplications, replacing summations in the plaintext. The total
latency of the modular multiplications is equal to the time
required to perform dlog2(ny)eMontgomery multiplications,
where ny is the number of the system outputs.

Now, consider dynamic controllers in (11). There are
now additional computations for updating the state of the
controller (described in Pseudocode 7) and for incorporating
the state of the controller into the generated control inputs.
The update of the controller state can be performed indepen-
dently of the generation of the control inputs. Therefore, the
controller performs the state update in parallel with system



Pseudocode 7 Computing the control input of the dynamic controller using the Montgomery multiplication and the
Montgomery exponentiation.

Parameters
N Paillier public key
R Montgomery radix
n′ Number of bits in mapping from fixed point numbers Q(n,m) to integers Z2n′

Ĉ Controller matrix
D̂[k]Controller matrix

Inputs
y̌ Encrypted system outputs in Montgomery form y̌1, ..., y̌ny

š Encrypted setpoints in Montgomery form š1, ..., šny

x̌ Encrypted controller state in Montgomery form x̌1, ..., x̌nx

Outputs
ǔ Encrypted control inputs in Montgomery form ǔ1, ..., ǔnu

ě Encrypted error values in Montgomery form ě1, ..., ěny

function GENERATECONTROL(y̌, š, x̌)
for i = 1, ..., ny do . Generate encrypted error values

temp← MONTEXP(y̌, 2n
′ − 1)

ěi ← MONTMULT[M = N2](temp, š)
end for
for i = 1, ..., nu do . Generate encrypted scalar products

for j = 1, ..., nx do
tempij ← MONTEXP(x̌j , Ĉij)

end for
for j = 1, ..., ny do

tempi(j+nx) ← MONTEXP(ěj , D̂[k]ij)
end for

end for
for i = 1, ..., nu do . Homomorphically sum up encrypted scalar products

for j = 2, ..., nx + ny do
tempi1 ← MONTMULT[M = N2](tempi1, tempij)

end for
ǔi ← tempi1

end for
return (ǔ, ě)

end function

control input decryption in the plant interface. This task
is labelled by “update controller state” in Figure 2, and is
described in Pseudocode 8. The additional matrix multipli-
cations are performed and can be parallelized similarly to
the static controller case. The modular exponentiations can
also be performed in parallel, and the results are multiplied
together afterwards in a binary tree structure with a latency
of dlog2(nx + ny)e times the latency of the Montgomery
multiplication.

For both the static and dynamic controller cases, the
controller requires at least one Montgomery exponentiator
module; all tasks can operate with just a single Montgomery
exponentiator if their steps are executed sequentially. If the
static controller’s tasks are to be fully parallelized, then
it requires nynu Montgomery exponentiator modules, to
perform the scalar multiplication in the matrix products on
ciphertexts. For fully parallelizing the dynamic controller, we
require (nx + ny) max(nx, nu) Montgomery exponentiation

modules.

IV. EXPERIMENT

To demonstrate the system, we have implemented en-
crypted balance control of an inverted pendulum using
our plant interface and controller digital designs on an
FPGA. Inverted pendulum systems are unstable and require
a dynamic controller to be robustly stabilized. We use the
Quanser QUBE-Servo 2 as the plant and the Terasic C5P
Development Board (equipped with the Cyclone V GX
5CGXFC9D6F27C7 FPGA) to implement the plant interface
and the encrypted controller. The setup is shown in Figure 3.

We use the following dynamic controller with a control
sampling frequency of 500 Hz to stabilize the inverted pen-



Pseudocode 8 Update of the controller state of dynamic controller using the Montgomery multiplication and the Montgomery
exponentiation.

Parameters
N Paillier public key
R Montgomery radix
n′ Number of bits in mapping from fixed point numbers Q(n,m) to integers Z2n′

T Controller reset period
Â Controller matrix
B̂[k]Controller matrix

Inputs
x̌ Encrypted old controller state in Montgomery form x̌1, ..., x̌nx

ě Encrypted error values in Montgomery form ě1, ..., ěny

k Timestep of old controller state modT

Outputs
x̌′ Encrypted new controller state in Montgomery form x̌′1, ..., x̌

′
nx

function UPDATESTATE(x̌, ě, k)
if k = 0 then . Controller reset

for i = 1, ..., nx do
x̌′i ← RmodN2 . Encrypted value of 0, in Montgomery form

end for
else

for i = 1, ..., nx do . Generate encrypted scalar products
for j = 1, ..., nx do

tempij ← MONTEXP(x̌′j , Âij)
end for
for j = 1, ..., ny do

tempi(j+nx) ← MONTEXP(ě, B̂[k]ij)
end for

end for
for i = 1, ..., nx do . Homomorphically sum up encrypted scalar products

for j = 2, ..., nx + ny do
tempi1 ← MONTMULT[M = N2](tempi1, tempij)

end for
x̌′i ← tempi1

end for
end if
return x̌′

end function

Fig. 3. Inverted pendulum balance control experimental setup.

dulum:

C : x[k + 1] =
125π

3072

500
0

625

T (s[k]− y[k]), (13a)

u[k] = x[k] +
125π

3072

−500
−2
−655

T (s[k]− y[k]),

(13b)

s[k] =

 0
θs[k]
1024

 , y[k] =

θ[k]
θ[k]
α[k]

 , (13c)

where θ is the measured rotational arm angle, θs is the
rotational arm angle setpoint, and α is the measured pen-
dulum angle, all in encoder counts (with 2048 encoder
counts measured per revolution). The resulting control input
u is a number between −999 and 999, representing a duty
cycle and direction. We implement this controller using
n′ = 32 bits, m = 7 bits, and an encryption key length
of 256 bits. In Section II, as there were no assumptions
on the integer or fractional nature of the parameters, all
parameters were multiplied by 2m to generate equivalent
integer numbers. However, in this experiment, the sensor
measurements and the C matrix are already integers, so
we use the following substitutions in our encrypted sys-
tem: ŝi[k] = s̄i[k] mod 232, ŷi[k] = ȳi[k] mod 232, B̂ij =
27B̄ij mod 232, Ĉij = C̄ij mod 232, D̂ij = 27D̄ij mod 232,
x̂i[k] = 27x̄i[k] mod 232, and ûi[k] = 27ūi[k] mod 232.
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the motor.
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Fig. 5. The inverted pendulum system with disturbances introduced at the
tip of the pendulum. Note that the control input duty cycle is signed to
specify the direction of rotation for the motor.

Since the state of the contrller is simply a one step delay used
to calculate velocities from position measurements by first
order, there is no state evolution, and consequently resetting
the controller state is not required. Rounding and clamping
of the generated control input is performed externally from
the plant interface and controller.

We utilize the Montgomery multiplier design in Pseu-
docode 2, which has an embedded multiplier usage that
scales linearly with encryption key length. We run two
Montgomery multipliers in parallel in each Montgomery
exponentiator, and run a single Montgomery exponentiator
in the plant interface and controller modules. We neglect the
generation of random numbers, but still calculate a number
to the power N in each control sampling period. We also
neglect instantiating a separate module to encrypt setpoints,
and instead encrypt setpoint in the controller, without the
use of random numbers. Neither of these simplifications
affect the synthesis, timing, or synthesis of the digital design,
as the random number generation can be done outside of
the digital engine using commercially available integrated
circuits for random number generation, and the encryption
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Fig. 6. Graph depicting how the minimum control sampling period
increases with greater security.

of setpoints with random numbers can occur in parallel with
the encryption of system outputs, thus not extending the
minimum control sampling period. Importantly, on the FPGA
we have distinct plant interface and controller modules and
use an abstracted network to communicate encrypted data
between them.

Figure 7 shows the hardware resource usage of the plant
interface module as the encryption key length increases, for
our implementation. Figure 6 shows the minimum control
sampling period as the encryption key length increases from
64 bits to 512 bits, which affects the speed with which physi-
cal systems can be controlled. For the key length of 512 bits,
the sampling time of system is 10 ms. Implementations using
other Montgomery multiplier architectures can potentially
result in completely different hardware resource usages and
speeds. Such issue are the topic of future work.

Figure 4 shows the system behaviour converging to its
setpoint. Figure 5 shows the system behaviour when distur-
bances are introduced at the tip of the pendulum. Evidently,
the controller successfully attenuates large disturbances (of
peak magnitude of twenty degrees).

In the experiments, we found that the latency of the
plant interface determines the maximum control sampling
frequency. This is due to Montgomery exponentiations with
the large exponents N and λ, which require more Mont-
gomery multiplications compared to the Montgomery expo-
nentiations in the controller, where the exponents are shorter.
If a larger control sampling frequency is required, then the
plant interface digital design could make use of the Chinese
Remainder Theorem [58] to reduce the size of the modulus in
Montgomery exponentiations, speeding up each calculation.

The hardware description language (HDL) code used for
synthesizing the encryption, secure controller, and decryption
in the experiment can be found at https://github.
com/availn/EncryptedControl. A video of the ex-
periment can also be found at https://youtu.be/
ATM0tcecst0.
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V. CONCLUSIONS AND FUTURE WORK

We presented an experimental setup to demonstrate a pow-
erful framework for encrypted dynamic control of unstable
systems using digital designs on FPGAs with deterministic
latency. The framework is scalable and can be applied to
large-scale cyber-physical systems. Future work includes
investigation of methods for speeding up the computations
and studying the effect of uncertain communication systems
on the performance of the system.
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