

Challenges in Avoiding Process Anomalies in Critical Infrastructure

2nd Workshop on Cyber-Physical Systems Se curity and Resilience (CPS-SR) Montreal, Canada

Aditya Mathur Professor and Center Director, iTrust Center for Research in Cyber Security Singapore University of Technology and Design

Professor of Computer Science, Purdue University, West Lafayette, IN, USA

Question

To what extent, and how, can we avoid anomalies in operational critical infrastructure?

Tour Guide

A. Context

A Distributed CI

ICS-CERT Annual Vulnerability Coordination Report 2016

Ransomware

Malware

Virus

A Recent Successful Attack: 2019 Norsk Hydro

Cyber Attack Against the Hydro Network. Please do not connect any devices to the Hydro network. Do not turn on any devices connected to the Hydro Network. Please disconnect any device (Phone/Tablet etc.) from the Hydro Network. Await new update.

19.03.2019

-Security

Critical Infrastructure: Interconnection

Water Treatment

Water Distribution

Electric power generation, transmission, distribution, AMI

B. Anomalies

Process anomaly

```
q<sub>i</sub>: plant state at time t=i
```

```
Valid state sequence:

q_{-k}q_{-k+1}q_{-k+2} \dots q_{-1}q_0q_1q_2 \dots
```

Anomalous state sequence: $q_{-k} q_{-k+1} q_{-k+2} \dots q_{-1} q'_0 q'_1 q'_2 \dots$

Anomalous sequence

Question:

How to detect anomaly as close to q'_0 as possible?

Anomalies: Cause and Avoidance

Component failure

Communications failure

Programming errors

Fault tolerant design Thorough testing

Process data manipulated Actuator command manipulated Secure design Firewalls IDS

Anomaly: Birth and Travel

Intrusion not detected

The Anomaly Impact Pyramid

C. Detection

Requirements

Ultra-high detection rate

rare for an anomaly to be not detected

Ultra-low rate of false alarm:

e.g., less than 1-false alarm in 6-months; data collected every second

Timely detection

Offers "enough" time for an operator to take corrective action and avoid damage

Approaches for Detection

Qin et al. 2018 Mujeeb et al.2018

 $Y_k = f(Y_{k-1}, z_1, z_2, \dots, z_n)$

Heng et al. 2019

DAD: Monitor placement

Monitor: A coded version of a set of rules that must hold during normal operation.

Near perfect anomaly detection is achievable BUT... may not be adequate to protect a plant from severe damage.

D. Command Validation

Definitions

 $\omega(t, a)$: A well-formed command sent to actuator a at time t.

 $\omega(t, a)$: Valid iff f(a, ω , s_k), where s_k is plant state when the command is issued.

f(a, ω , s_k): actuator function for ω (t, a) ; ensures correct and safe operation of the plant

Sample Actuator Functions

Actuator	Command Set	Actuator functions	
P101	{ON, OFF}	$f[P101 ON]({LIT101, LIT301, MV201}) = (LIT101 > 250 \text{ AND LIT301} \le 800 \text{ AND MV201} == OPEN)$	
		$f[P101 OFF]({LIT101, LIT301, MV201}) = (LIT101 < 250 \text{ OR LIT301} > 800 \text{ OR MV201} == CLOSE)$	
MV101	{OPEN, CLOSE}	$f[MV101 OPEN](\{LIT101\}) = LIT101 < 500$	
		$f[MV101 CLOSE]({LIT101})) = LIT101 > 80$	

Source of invalid (malicious) commands

Faulty component or network communications

Faulty network communications

Incorrect code

Cyber attack

Origin of a Malicious Command

Direct: Attacker sends a malicious command to an actuator.

Indirect: Attacker deceives a PLC through manipulation of state variables. In turn the deceived PLC sends a malicious command.

A Key Requirement for Validation

Given what we know about the origin of a command...

...a command validator must be able to obtain accurate estimate of the system state and predict continuous state variables.

How to ensure that a command validator can obtain accurate state estimate?

Where should a command validator be installed?

When a command is found to be malicious, should it be sent to the target actuator?

How to avoid the damaging impact of late detection?

Past work

Stone et al., 2012 Improved modeling and validation of command sequences using a checkable sequence language

Mashima et al., 2016 An active command mediation approach for securing remote control interface of substations

Lin et al., 2016 Runtime semantic security analysis to detect and mitigate control-related attacks in power grids

Maimone et al., 2018 RP-check: An architecture for spaceflight command sequence validation

Our approach

Real-time (not simulation)

Design centric; partial state estimation

ALL commands are validated

The Approach

Architecture for Command Validation

E. Experimental Evaluation

Critical Infrastructure: Water Treatment

Set-up

Time to make decision

Case 3: Attack before t0,

- a. detected between t0 and t1,
- b. detected after t1, and
- c. Not detected.

Attacks: Stage 1

Target	Attack	Detected first by
MV101	Open and Close (chatter	CV
	attack)	
LIT101	Spoof level to low	DAD; then after 6-seconds
		CV stopped the MV101 open
		command
P101	Stop the pump	CV
LIT101	Cut sensor wire in RIO	DAD

Attacks: Stage 2

Target	Attack	Detected first by
AIT202	Decrease the pH value	CV
MV201	Close	CV
P205 (NaOCI)	Stop the pump	CV
P201, P202	Turn ON	CV

Attacks: Stage 3

Target	Attack	Detected first by
P301	Stop outflow from UF	CV
DPIT301	Activate backwash	CV
LIT301	Spoof to HH	DAD

Summary 1: Detection and anomalies

CV detected 8 out of 11 attacks.

Remaining three attacks:

- on analog values,
- detected by DAD, i.e., caused anomalies, but
- did not lead to the desired impact.

Summary 2: Timing

No attack detected before t_0 .

Attacks detected between t_0 and t_1 :

Stage 1: Two out of four attacks detected before t_1 Stage 2: All four attacks detected before t_1 Stage 3: Two out of three detected before t1

In the experiments conducted, CV worked well in concert with the anomaly detector.

Anomalies arising out of continuous state variables are detected by DAD. These may lead to malicious commands (indirect).

Direct malicious attacks possible only when intelligent checkers are compromised.

F. Next Steps

Implement CV across the entire plant.

Design and launch single and multi-point masking attacks.

Should CV, with state prediction, be placed inside PLCs?

Design of Command Validator for Power Grid

Will the approach work on a power grid?

Timing is critical

100% anomaly avoidance?

Is that a realizable dream?

...to all those who are making it happen!

PhD Students

Sridhar Adepu Mujeeb Chuadhary Gayathri Sugumar

Collaborators

- Professor Sicco Verwer
- Lin Qin, PhD Student

Research Staff

- Jonathan Heng
- Gauthama lyer
- Nandha Kandasamy
- Robert Kooij
- Vishrut Mishra
- Venkat Reddy
- Siddhant Shrivastava
- Andrew Yoong

Je vous remercie Thank You!