CPS-SR CPS-IoT Week 2019 April 15 - 18, 2019 Montreal, Canada

Intrusion Detection of Networked Cyber-Physical Systems via Three-Level Deep Packet Inspection

Jianghai LI, Wen Si, Xiaojin Huang Institute of Nuclear Energy Technology (INET) Tsinghua University April, 2019

Outline

- Introduction of INET of Tsinghua Univ.
- Cybersecurity of Networked CPS
- Three Level of Deep Packet Inspection
- Intrusion Detection based on Neural Network
- Data Capture and Results
- Conclusions

Tsinghua University

A comprehensive and research-intensive university Founded in 1911

19 schools 55 departments

- Engineering
- Science
- Humanities and Social Sciences
- Architecture
- Arts and Design
- Medicine

•••••

INET

- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
- Founded in 1960s

Research Areas

- Advanced Nuclear Energy Technology (three research reactors)
 - A twin-core experimental shielding reactor
 - A 5MW nuclear heating reactor (NHR-5)
 - A 10MW modular high temperature gas-cooled reactor (HTR-10): a type of Gen-IV reactor
- Nuclear Technology
 - ⁶⁰Co container inspection system
- New Energy Technology
 - Lithium-ion batteries and fuel cells
- Energy Policy Research

HTR-PM: a commercial NPP

- High Temperature Gascooled Reactor -Pebble-Bed Module
 - Total thermal power: 2*250MWth
 - Rated electrical power: 210MWe
 - Primary helium press: 7MPa
 - Temperature at inlet/outlet: 250/750 °C

NPP Plan of China

Fortune China, 2014

Main Control Room - 3D Model

Outline

- Intro of INET of Tsinghua Univ.
- Cybersecurity of Networked CPS
- Three Level of Deep Packet Inspection
- Intrusion Detection based on Neural Network
- Data Capture and Results
- Conclusions

Networked CPS

- Industrial Control Systems (ICS)
 - P: sensors and actuators
 - C: control programs

Networking Protocols

- Not standard TCP/IP
- Modbus, Siemens S7, OPC UA

Commercial IDS

- Proprietary ones
- TCP/IP variants

Outline

- Intro of INET of Tsinghua Univ.
- Cybersecurity of Networked CPS
- Three Level of Deep Packet Inspection
- Intrusion Detection based on Neural Network
- Data Capture and Results
- Conclusions

Categories of Hackers based on Their Abilities

IT Hackers

- skilled with IT security
- unaware of industrial control

ICS Hackers

- skilled with IT security
- familiar with ICS and protocols

NPP Hackers (Process Hackers)

- skilled with IT security
- familiar with I&C systems
- access NPP (Process) information

Deny of Service

- by IT hackers
 - Intercept data packets of HMI commands
- Effect: operators lose control of PLC

Command Injection

- by ICS hackers
 - Inject the STOP command of PLC
- Effect: PLC offline

Data Falsification

- by NPP hackers
 - falsify the feedback data to HMI
- Effect: Operators deceived
 - 三、数据篡改攻击 3. data tampering attack

Three-level Deep Packet Inspection

1. Network level

- Inspection with networking protocols (TCP/IP)
- Network flow statistics and packet analysis
- Commercial IDS for Internet
- 2. Control level
 - Inspection with control protocols (Modbus, S7, ...)
 - Values of the protocol fields
 - ICS-IDS
- 3. Process level
 - Inspection with control configuration
 - Physical data: Quantities or commands, such as temperature, pressure, valve status, motor start/stop command
 - ICS-IDS customized for NPP

Deep Packet Inspection

00	04	17	02	58	b7	78	e7	d1	e0	02	5e	08	00	45	00
00	34	70	27	40	00	80	06	00	00	8d	51	00	0a	8d	51
00	56	df	60	01	f6	54	dc	43	66	80	54	d3	26	50	18
f9	71	1b	29	00	00	00	00	00	00	00	06	ff	04	<u> </u>	d2
00	02														
00	04	17	02	58	b7	78	e7	d1	eØ	02	5e	08	00	45	00
00	34	70	27	40	00	80	<u>06</u>	00	00	8d	51	00	0a	8d	51
00	56	df	60	01	f6	54	dc	43	66	80	54	dЗ	26	50	18
fo	71	1h	20	00	00	00	00	00	00	00	06	ff	04	00	do

00	04	17	02	58	b7	78	e7	d1	eØ	02	5e	Ø 8	00	45	00
00	34	70	27	40	00	80	<u>06</u>	00	00	8d	51	00	0a	8d	51
00	56	df	60	01	f6	54	dc	43	66	80	54	d3	26	50	18
f9	71	1b	29	00	00	00	00	00	00	00	06	ff	04	08	d2
00	02														

- IPv4
 - Src IP = 141.81.0.10
 - Dest IP = 141.81.0.86
 - Src port = 57184
 - Dest port = 502
- Function code = 4 (Read input registers)
 Reference number = 2258 (Staring address)
 Word count = 2 (Number of registers)

00 02

Outline

- Intro of INET of Tsinghua Univ.
- Cybersecurity of Networked CPS
- Three Level of Deep Packet Inspection
- Intrusion Detection based on Neural Network
- Data Capture and Results
- Conclusions

Intrusion Detection Algorithms

Characteristic detection

- Based on known malicious data models
- Efficient and accurate, only for known attacks
- Applied in control level inspection
- Anomaly detection
 - Based on a legal behavior model, either by experts, or by machine learning
 - for unknown attacks, false alarms
 - Applied in process level inspection
- Still an open question

One-class Detection based on RNN

- Why One-class?
 - Few attack data, while abundant normal data
- Replicator neural network (RNN)
 - replicating the input data as the desired outputs, with the same number of neurons in output layer and the input layer

Feature extraction

Feature extraction

Sliding window feature extraction approach

Features extracted from packet headers							
Average time interval	Number of packets with a 0 data length						
Number of IP addresses	Number of ports						
Number of packets using ARP protocol	Average data length						
Number of sorts of flag codes	Average frame length						
Number of packets with a 0 window size	Average total length of packets						

Outline

- Intro of INET of Tsinghua Univ.
- Cybersecurity of Networked CPS
- Three Level of Deep Packet Inspection
- Intrusion Detection based on Neural Network
- Data Capture and Results
- Conclusions

Security Test Box

- Attack Generation
 I&C Testbed
- Intrusion Detection

Structure of Test Box

Cooling Water System

Structure of Datasets

Training of RNN

•
$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - t_i)^2}$$

- is used to measure the difference between output and input
- To enhance robustness of our model, we set 3 times of the max value of *RMSE* as the threshold

Attack Detection and Identification

Wen SI, Jianghai LI, Xiaojin HUANG, One-class Anomaly Detection for I&C Systems based on Replicator Neural Networks, NPIC-HMIT 2019, Orlando, FL, US, Feb. 2019.

Figure 8. Anomaly detection evaluation using 3 testing datasets. (a) Testing dataset1 (b) Testing dataset2 (c) Testing dataset3 -

Wen SI, Jianghai LI, Xiaojin HUANG, Attack Identification In I&C Systems based on Physical Data, ICONE27, accepted

Conclusions

- Three classes of hackers and attacks
- Three levels of DPI
- Intrusion detection based on replicator neural network
- ICS security test box for data capture

Thank you.

Jianghai LI +86-133-6647-7697 lijianghai@tsinghua.edu.cn

